
Page 6 FoxRockX July 2016

A better format would be to have one column
for each country and one row for each job title, with
the intersection of the two containing the number
of employees in that country with that job title. As
shown in my last article, in VFP, one way to get this
result, especially when the number of countries is
small, is to use SUM(IIF()) to do the counting. You
can do something analogous in T-SQL, using CASE
rather than IIF. Listing 2, included in this month’s
downloads as JobTitleByCountryCase.SQL, shows
code to do it this way. Figure 2 shows partial results,
much easier to interpret than the previous version.

Listing 2. You can create a simple crosstab using CASE to
break out the individual columns.
SELECT JobTitle,
 SUM(CASE CR.Name WHEN 'Australia'
 THEN 1 ELSE 0 END) AS nAustralia,
 SUM(CASE CR.Name WHEN 'Canada'
 THEN 1 ELSE 0 END) AS nCanada,
 SUM(CASE CR.Name WHEN 'France'
 THEN 1 ELSE 0 END) AS nFrance,
 SUM(CASE CR.Name WHEN 'Germany'
 THEN 1 ELSE 0 END) AS nGermany,
 SUM(CASE CR.Name WHEN 'United Kingdom'
 THEN 1 ELSE 0 END) AS nUK,
 SUM(CASE CR.Name WHEN 'United States'
 THEN 1 ELSE 0 END) AS nUSA
 FROM [HumanResources].[Employee]
 JOIN [Person].[BusinessEntityAddress] BEA
 ON Employee.BusinessEntityID =
 BEA.BusinessEntityID
 JOIN [Person].[Address]
 ON BEA.AddressID = Address.AddressID
 JOIN [Person].[StateProvince] SP
 ON Address.StateProvinceID =
 SP.StateProvinceID
 JOIN [Person].[CountryRegion] CR
 ON SP.CountryRegionCode =
 CR.CountryRegionCode
 WHERE Employee.CurrentFlag = 1
 GROUP BY JobTitle
 ORDER BY JobTitle

PIVOT = Crosstabs, SQL
Style
SQL Server’s PIVOT keyword lets you create crosstabs

Tamar E. Granor, Ph.D.

A crosstab is a result table or cursor where the set
of columns is based on data values in the source.
My last article looked at creating crosstabs in VFP,
where you can’t create a crosstab with just a query.
Since SQL Server 2005, however, you can create
crosstabs without any additional code or tools.
Suppose you want to know how many employees
AdventureWorks has in each country for each job
title. The query in Listing 1 answers the question,
but the form of the result (partially shown in Fig-
ure 1) makes it hard to grasp. The query is included
in this month’s downloads as JobTitleByCountry.
SQL.

Listing 1. This query provides the number of employees with
each job title in each country, but each record represents one
job title/country combination.
SELECT JobTitle, CR.Name, Count(*) AS EmpCount
 FROM [HumanResources].[Employee]
 JOIN [Person].[BusinessEntityAddress] BEA
 ON Employee.BusinessEntityID =
 BEA.BusinessEntityID
 JOIN [Person].[Address]
 ON BEA.AddressID = Address.AddressID
 JOIN [Person].[StateProvince] SP
 ON Address.StateProvinceID =
 SP.StateProvinceID
 JOIN [Person].[CountryRegion] CR
 ON SP.CountryRegionCode =
 CR.CountryRegionCode
 WHERE Employee.CurrentFlag = 1
 GROUP BY JobTitle, CR.Name
 ORDER BY JobTitle, CR.Name

Figure 1. Each row here shows the number of employees with
the specified job title in the specified country.

July 2016 FoxRockX Page 7

But T-SQL offers an easier way to do this.

Introducing PIVOT
The PIVOT operator provides a way to crosstab
without having to write out all the CASE expres-
sions. PIVOT goes into the FROM clause of the
query. Listing 3 shows the syntax for using PIVOT.

In my experience, this is a case where it’s easi-
est to use “*” rather than listing specific field names.
The source table can be an actual table, a derived
table, or a table created as part of a CTE.

Listing 3. The PIVOT operator appears in the FROM clause of
a query and specifies an aggregation function.
SELECT <non-pivoted column>,
 <list of pivoted columns with aliases>
FROM <source table>
PIVOT
(<aggregation function>(<column to aggregate>)
 FOR [<column name column>]
 IN (<list of values>)
) AS <alias for the pivot table>

The interesting part is what goes after the
PIVOT keyword. First, you need an aggregation
function, such as SUM(OrderTotal). After FOR, you
list the name of the source column whose values
are to become columns in the result. In the job title
by country example, that’s the Country column.

Finally, after IN, you have to include a list of
all the values of
interest. Having
an explicit list
is both a good
thing and a bad
thing. It’s a good
thing because
it allows you to
include only a
subset of the val-
ues from the rele-
vant column. It’s
a bad thing, of
course, because
it requires you to
know the list of
values from that
column.

Listing 4 shows a query using PIVOT that pro-
duces the same results as the query in Listing 2. A
CTE collects the list of employees with their job
titles and countries. The main query uses PIVOT
to count the number of employees by country.
The CTE has three columns: JobTitle, Country and
EmpID. The main query specifies that all three are
in the result (SELECT *), but the PIVOT clause indi-
cates that Country determines the columns (the
column headers are the actual values from Coun-
try), and that EmpID is aggregated, in this case, by
counting. Figure 3 shows partial results. The query
is included as JobTitleByCountryPivot.SQL in this
month’s downloads.

Listing 4. This query pivots on country to produce one record
per job title with a column for each country where any employ-
ees are located.
WITH csrJobCountry
 (JobTitle, Country, EmpID)
AS
(SELECT JobTitle, CR.Name,
 Employee.BusinessEntityID
 FROM [HumanResources].[Employee]
 JOIN [Person].[BusinessEntityAddress] BEA
 ON Employee.BusinessEntityID =
 BEA.BusinessEntityID
 JOIN [Person].[Address]
 ON BEA.AddressID = Address.AddressID
 JOIN [Person].[StateProvince] SP
 ON Address.StateProvinceID =
 SP.StateProvinceID
 JOIN [Person].[CountryRegion] CR
 ON SP.CountryRegionCode =
 CR.CountryRegionCode
 WHERE Employee.CurrentFlag = 1
)

SELECT *
 FROM csrJobCountry
 PIVOT(COUNT(EmpID)
 FOR Country
 IN (Australia, Canada, France, Germany,
 [United Kingdom], [United States]))
 AS EmpTotal

Figure 2. Using CASE with SUM() gives one column per
country and makes the results more readable.

Figure 3. The results here are the same as in Figure 2 except for the column headers, which are the actual coun-
try names from the CountryRegion table.

Page 8 FoxRockX July 2016

I suspect that the most commonly used
function in the pivot is SUM, letting you see some
kind of total across a set of time periods or regions
or other way of dividing up data. For example,
Listing 5 produces total sales for each salesperson
for each year; Figure 4 shows partial results. This
query is included in this month’s downloads as
SalesPersonAnnualSalesCTE.SQL.

Listing 5. Here, total sales for each salesperson for each year
is computed.
WITH SalesByYear
 (SalesPersonID, SalesYear, SubTotal)
AS
(SELECT SalesPersonID, YEAR(OrderDate),
 SubTotal
 FROM Sales.SalesOrderHeader
 WHERE SalesPersonID IS NOT NULL)

SELECT *
 FROM SalesByYear
 PIVOT(SUM(SubTotal)
 FOR SalesYear
 IN ([2011], [2012], [2013], [2014]))
 AS TotalSales
 ORDER BY SalesPersonID

In this example, again, the CTE includes exactly
three columns. One (SalesPersonID) determines the
rows, one (SalesYear) determines the columns, and
one (SubTotal) is aggregated to
produce the data values.

Of course, this data would be
more useful with the salespeo-
ple’s names as well as their IDs.
You can turn the query with the
PIVOT into a CTE and add the
names afterward, as in Listing 6
(which is included in this month’s
downloads as SalesPersonAnnu-
alSalesWithNameCTE.SQL. Par-
tial results are shown in Figure 5.

Listing 6. A query that uses PIVOT can be a CTE, so you can
add more data.
WITH SalesByYear
 (SalesPersonID, SalesYear, SubTotal)
AS
(SELECT SalesPersonID, YEAR(OrderDate) ,
 SubTotal
 FROM Sales.SalesOrderHeader
 WHERE SalesPersonID IS NOT NULL),

SalesByYearPivot
AS
(SELECT *
 FROM SalesByYear
 PIVOT(SUM(SubTotal)
 FOR SalesYear
 IN ([2011], [2012], [2013], [2014]))
 AS TotalSales)

SELECT Person.FirstName, Person.LastName,
 SalesByYearPivot.*
 FROM SalesByYearPivot
 JOIN Person.Person
 ON SalesByYearPivot.SalesPersonID =
 Person.BusinessEntityID
 ORDER BY LastName, FirstName

Getting meaningful
column names
By default, the list you include
in the IN portion of PIVOT
determines the names of pivoted
columns. So, in the sales example,
the columns are called 2011, 2012,
etc., while in the jobs example,
they’re the names of the countries.
(This also explains why numeric
values or values containing
spaces need to be surrounded
by square brackets; that’s the
standard way of referring to a
column with a name that can’t
stand alone.)

However, you can actually
specify alternative names for
these columns in the field list of
the query, just as you can for any

field. The query in Listing 7 pulls sales data for one
year and then pivots on month. The field list changes

Figure 4. Each row here represents one salesperson, while each column represents a year.
The intersection shows the dollar total of sales for that salesperson for that year.

Figure 5. Salesperson names are added to this pivoted result by putting the pivot into a
CTE.

July 2016 FoxRockX Page 9

the names for those columns from the numeric
month to the standard abbreviations. Figure 6
shows partial results, and the query is included as
SalesPerson2013MonthlySalesWithMonthNames.
SQL in this month’s downloads.

Listi ng 7. You can rename pivoted columns in the fi eld list of
the query.
WITH SalesByMonth
AS
(SELECT SalesPersonID,
 MONTH(OrderDate) As SalesMonth,
 SubTotal
 FROM Sales.SalesOrderHeader
 WHERE SalesPersonID IS NOT NULL
 AND YEAR(OrderDate) = 2013)

SELECT SalesPersonID,
 [1] AS Jan, [2] AS Feb, [3] AS Mar,
 [4] AS Apr, [5] AS May, [6] AS Jun,
 [7] AS Jul, [8] AS Aug, [9] AS Sep,
 [10] AS Oct, [11] AS Nov, [12] AS Dec
 FROM SalesByMonth
 PIVOT(SUM(SubTotal)
 FOR SalesMonth
 IN ([1], [2], [3], [4], [5], [6], [7],
 [8], [9], [10], [11], [12]))
 AS TotalSales
 ORDER BY SalesPersonID;

This query also shows
why it’s generally easier to use
SELECT * in a PIVOT. Other-
wise, you need to list each piv-
oted column by name.

Determining rows by
multiple columns
In the examples above, the set
of rows was determined by a
single fi eld, JobTitle in the fi rst
case and SalesPersonID in the
others. But it’s possible to use
multiple fi elds to specify the
rows. All you have to do is have
multiple columns in the query
that aren’t listed in the PIVOT
clause.

For example, the query in Listing 8 has one
row for each salesperson for each month. The CTE
result has four fi elds: salesperson ID, month, year
and invoice amount. The main query totals the
invoice amount and specifi es that year determines
the columns. That leaves both salesperson ID
and month to specify the rows. Partial results
are shown in Figure 7. The query is included as
SalesPersonMonthlySales.SQL in this month’s
downloads.
Listin g 8.This query uses two fi elds (SalesPersonID and
SalesMonth) to specify the rows in the pivoted result.
WITH csrSalesByYear
AS
(SELECT SalesPersonID,
 MONTH(OrderDate) As SalesMonth,
 YEAR(orderDate) AS SalesYear,
 SubTotal
 FROM Sales.SalesOrderHeader
 WHERE SalesPersonID IS NOT NULL)

SELECT *
 FROM csrSalesByYear
 PIVOT(SUM(SubTotal)
 FOR SalesYear
 IN ([2011], [2012], [2013], [2014]))
 AS TotalSales
 ORDER BY SalesPersonID, SalesMonth;

Aggregating on
more than one
column
A more complicated problem
is computing more than one
aggregate result. For example,
suppose you want to get both
total sales and the number of
sales by year for each sales-
person. You might think that
you could simply list mul-
tiple aggregate functions after
PIVOT, but that doesn’t work.

Figure 6. One year’s sales were pivoted by month. Then, the fi eld names were replaced by
something more meaningful.

Figure 7. Here, the pivot result uses two columns to distinguish the rows.

Page 10 FoxRockX July 2016

In fact, to include multiple pivoted aggrega-
tions, you have to perform the pivots separately
and then join the results. You also have to make
sure that whatever you’re selecting from contains
only the columns relevant to that particular aggre-
gation.

The easiest way to do this is with a series of
CTEs, as in Listing 9. The first two CTEs, SalesByYear
and SalesTotal, are the same as previous examples,
producing one row per salesperson with one
column per year. The final CTE, SalesCount,
produces one row per salesperson with one column
per year containing the number of orders for that
salesperson in that year. Finally, the main query
joins SalesTotal and SalesCount on SalesPersonID,
including all the pivoted columns from each of
them. Figure 8 shows partial results. This query is
included as SalesPersonAnnualSalesMulti.SQL in
this month’s downloads.

Listing 9.To pivot and aggregate on multiple columns, you
have to do each pivot separately, and then join the results.
WITH SalesByYear
 (SalesPersonID, SalesYear, SubTotal)
AS
(SELECT SalesPersonID,
 YEAR(OrderDate), SubTotal
 FROM Sales.SalesOrderHeader
 WHERE SalesPersonID IS NOT NULL),

SalesTotal
AS
(SELECT SalesPersonID,
 [2011] AS Total2011,
 [2012] AS Total2012,
 [2013] AS Total2013,
 [2014] AS Total2014
 FROM SalesByYear
 PIVOT(SUM(SubTotal)
 FOR SalesYear
 IN ([2011], [2012], [2013], [2014]))
 AS TotalSales),

SalesCount
AS
(SELECT SalesPersonID,
 [2011] AS Count2011,
 [2012] AS Count2012,
 [2013] AS Count2013,
 [2014] AS Count2014

 FROM SalesByYear
 PIVOT(COUNT(SubTotal)
 FOR SalesYear
 IN ([2011], [2012], [2013], [2014]))
 AS Sales)

SELECT ST.SalesPersonID,
 SC.Count2011, ST.Total2011,
 SC.Count2012, ST.Total2012,
 SC.Count2013, ST.Total2013,
 SC.Count2014, ST.Total2014
 FROM SalesTotal ST
 JOIN SalesCount SC
 ON ST.SalesPersonID = SC.SalesPersonID
 ORDER BY ST.SalesPersonID

In my initial attempts at doing this (because,
for some reason, I mistakenly thought that doing
COUNT(Subtotal) would count only distinct
values), I tried using a single CTE containing
both Subtotal and SalesOrderID as the source for
both pivots. However, even though the unneeded
field was omitted from the field list of the queries
performing the pivots, the field was still used in
determining the rows of the result. Every field in the
source table for a pivot is used either in determining
rows, determining columns, or aggregation. The
query in Listing 10 demonstrates the issue. The CTE
includes SalesOrderID, though it’s not mentioned in
the main query. Nonetheless, the results (partially
shown in Figure 9) have one row per sales order
rather than one row per salesperson. This faulty
query is included in this month’s downloads as
SalesPersonAnnualExtraField.SQL

Listing 10. Every field in the table specified for a pivot is used
somehow. If it’s not otherwise specified, it helps determine the
list of rows.
WITH SalesByYear
 (SalesPersonID, SalesYear,
 SubTotal, OrderID)
AS
(SELECT SalesPersonID, YEAR(OrderDate),
 SubTotal, SalesOrderID
 FROM Sales.SalesOrderHeader
 WHERE SalesPersonID IS NOT NULL)

SELECT SalesPersonID,
 [2011] AS Total2011,
 [2012] AS Total2012,

Figure 8. By joining the results of two separate pivots, we can do two different aggregations.

July 2016 FoxRockX Page 11

 [2013] AS Total2013,
 [2014] AS Total2014
 FROM SalesByYear
 PIVOT(SUM(SubTotal)
 FOR SalesYear
 IN ([2011], [2012], [2013], [2014]))
 AS TotalSales

But wait, there’s more
In my next article, I’ll look at how you can pivot
when you don’t know the list of values in the pivot
column, as well as at the UNPIVOT command that
gives you an easy way to normalize non-normal-
ized data.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomor-
row’s Solutions, LLC. She has developed and
enhanced numerous Visual FoxPro applications
for businesses and other organizations. Tamar is
author or co-author of a dozen books including the
award winning Hacker’s Guide to Visual FoxPro,
Microsoft Office Automation with Visual FoxPro
and Taming Visual FoxPro’s SQL. Her latest col-
laboration is VFPX: Open Source Treasure for the
VFP Developer, available at www.foxrockx.com.
Her other books are available from Hentzenwerke
Publishing (www.hentzenwerke.com). Tamar was
a Microsoft Support Most Valuable Professional
from the program's inception in 1993 until 2011.
She is one of the organizers of the annual South-
west Fox conference. In 2007, Tamar received the
Visual FoxPro Community Lifetime Achievement
Award. You can reach her at tamar@thegranors.
com or through www.tomorrowssolutionsllc.com.

FoxRockX™(ISSN-1866-4563)

dFPUG c/o ISYS GmbH
Frankfurter Strasse 21 B
61476 Kronberg, Germany
Phone +49-6173-950903
Fax +49-6173-950904
Email: foxrockx@dfpug.de
Editor:
Rainer Becker-Hinrichs

Copyright © 2016 ISYS GmbH. This work is an independently produced
pub lication of ISYS GmbH, Kronberg, the content of which is the property
of ISYS GmbH or its affiliates or third-party licensors and which is protected
by copyright law in the U.S. and elsewhere. The right to copy and publish the
content is reserved, even for content made available for free such as sample
articles, tips, and graphics, none of which may be copied in whole or in part
or further distributed in any form or medium without the express written
permission of ISYS GmbH. Requests for permission to copy or republish any
content may be directed to Rainer Becker-Hinrichs.

FoxRockX, FoxTalk 2.0, FoxTalk, Visual Extend and Silverswitch are trademarks of ISYS GmbH. All product names or
services identified throughout this journal are trademarks or registered trademarks of their respective companies.

FoxRockX is published bimonthly by ISYS GmbH

Figure 9. Because the table used for this pivot includes SalesOrderID, the
result has one row per sales order, rather than just one per salesperson.

DOWNLOAD
Subscribers can download FR201607_code.zip in the SourceCode sub directory of the document
portal. It contains the following files:

doughennig201607_code.zip
Source code for the article “Working with Microsoft Excel, Part 1” from Doug Hennig

tamargranor201607_code.zip
Source code for the article “PIVOT = Crosstabs, SQL Style” from Tamar E. Granor, Ph.D.

rickschummer201607_code.zip
Source code for the article “VFPX: GoFish 5” fromRick Schummer

